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ABSTRACT 

The sign matrices uniquely associated with the matrices (M - ljl)‘, where Tj are 
the corners of a rectangle oriented at r/4 to the axes of a Cartesian coordinate system, 
may be used to compute the number of eigenvalues of the arbitrarily chosen matrix M 
which lie within the rectangle, and to determine the left and right invariant subspaces 
of M associated with these eigenvalues. This paper is concerned with the proof of this 
statement, and with the details of the computation of the required sign matrices. 

I. INTRODUCTION 

A unique matrix, the sign matrix M,, may be associated with any real or 
complex square matrix M = MO, none of whose eigenvalues is pure imaginary, 
as the limit of the convergent matrix sequence (Mj) generated by the 
recursion 

Mj+l= 

Mj+ M;’ 

2 ’ 
M,=M. (11 

The definition, iterative construction and application of the sign matrix to the 
solution of matrix Riccati and Liapounov equations have been given by J. D. 
Roberts [lo]; further applications have been developed by A. N. Beavers, Jr. 
and E. D. Denman [3-51 and by A. Halbersberg and Y. Bar-ness [7]. 
Consideration of the Jordan form of M and of the properties of the Newton 
iteration x j+1 = (xi + XT ‘)/2 for determining the square roots of + 1 shows 
that the eigenvalues of M are + 1 and - 1; each eigenvalue + 1 correspond- 
ing to an eigenvalue of M with positive real part, and each eigenvalue - 1 
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corresponding to an eigenvalue of M with negative real part. Further, 
regardless of the compIexity of the Jordan structure of M, M, is always 
diagonable. 

In the present context, the most important property of M, is expressed by 
the formula 

Tr(M,) = P - 9, 

where p, 9 are the numbers of eigenvalues of M with positive and negative 
real parts, respectively, and p + 9 = order(M). Tr(M,) is thus analogous to 
the signature of a quadratic form, such as that formulated by Her-mite [8, $111 
to count the numbers of zeros of a complex polynomial with positive and 
negative imaginary parts. 

Adapting Hermite’s method [8, §IV], it may be noted that the eigenvalues 
of (M - {Z)2, with { = a + ib, are (X - a>2 - (y - b)2 + i2(x - a)(y - b), 
where h = x + iy is a typical eigenvalue of M. An eigenvalue of (M - {Z )2 has 
positive real part whenever 

(-u)“-(dd2= - [y-b-(x-a)][y-b+(x-a)]>o, 

that is, whenever h lies in one of the sectors defined by the inequality 

[(Y -b)-(x-)l[(~ -b)+b-a)] ~0. 

Thus, N(P)=Tr(((M-YI)2)m) counts the number of such eigenvalues with 
respect to any point {. Selecting four points n, s, e, w at the corners of a 
rectangle whose sides are formed from the lines 

[(Y-b)-(r-u)l[(y-b)+(x-a)]=0 (2) 

at each point, as illustrated in the diagram Figure 1, the number S of 
eigenvalues within the rectangle is just 

s= N(w)+Ne)-N(n)-N(s) 
4 (3) 

When such a rectangle has been shown to contain eigenvalues, a process of 
subdivision may be applied in the hope of identifying smaller rectangles, of 
the same type, which locate these eigenvalues more closely. It may be noted 
that, whenever it is known that the eigenvalues of M are real, it is sufficient to 
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FIG. 1. 

calculate Tr((M - {Z),) at points [ on the real axis. Then the number of 
eigenvalues lying in the interval ([i, 5,) is 

s= Tr((M-~1Z),)-Tr((M-~2Z),) 
2 (4) 

II. PROPERTIES OF THE SQUARE ROOT ITERATION 

The algorithm (1) for the construction of the sign matrix is suggested by 
and depends upon the properties of the scalar iteration 

z + ZTl 
I 

‘i+l 
=-L.--J- 

2 

for the computation of the square roots of + 1. It follows from this formula 
that 

‘i+l + ’ 

( i 

2 zi+l 
p= 
‘i+l-l .zi-1 ’ 

so that, if wi = (zi + l)/(s, - 1) is the image of zi under the involutory 
conformal transformation 

2+1 
w=- 

z-1’ 
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then wi+r = w’. The square root iteration is thus conformally equivalent to 
successive squaring. It is known that the transformation (6) maps the imagin- 
ary axis x = 0 in the z-plane onto the unit circle in the *plane, and the right 
(left) half of the z-plane onto the interior (exterior) of the unit circle in the 
w-plane and vice versa, so that it may be concluded at once that: 

(A) If zi lies in the left (right) half of the x-plane, wi lies inside (outside) 
the unit circle in the w-plane. Then wi + r also lies inside (outside) the unit 
circle, whence zi+r lies in the left (right) half plane. 

(B) If .zi lies on the imaginary axis in the z-plane, wi lies on the unit circle 
in the w-plane. Then wi + i lies on the unit circle in the w-plane, so zi + r lies on 
the imaginary axis in the z-plane. A more detailed study of the iteration 
sequence {zi> in this case shows that it either cycles among the (finitely 
many) points of a repulsive cycle, or else constitutes an everywhere dense 
perfect set on the imaginary axis. (See [9, pp. 103%1041 for a discussion of the 
conformally equivalent iteration wi + r = wy in this case.) In practical compu- 
tation, it is clear that this sequence either cycles indefinitely or else, at some 
stage, either overflows or underflows the number range of the computer. 

(C) If x0 lies in the left (right) half plane, so that we lies inside (outside) 
the unit circle, then { wi} is convergent to 0 (co) and (zi} is correspondingly 
convergent to - 1 ( + 1). 

This last observation is the justification for the use of the iteration (1). 
More specifically, it is easily seen that 

zr+l- z,+l R 

z, - 1 i i za - 1 
= wo”, 

where R = 2’. whence 

2 
x,-l=--- 

2wo” 

wo” - 1’ 
z,+l=--- 

Wff - 1’ 

If z0 lies in the left half plane, so that z, + - 1 and wt + 0, then 

pi, + l(= $$ < 21wolR <E 

0 -11 l- lwOIR 

whenever 
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Similarly, when z0 lies in the right half plane, so that z, --j + 1 and w! --, co, 
then 

Iz, - h( = 2 2 

Id- 1, G ,w,,n-1 <e 

whenever 

Thus, the rate of convergence of the square root iteration is entirely depen- 
dent on the modulus of the initial value wa. Consideration of the circles of 
Appolonius (see [l, $3.5, p. 841) with limit points k 1-i.e. the images, in the 
z-plane, of circles ) wj = p -shows that 1 wo] is largest when z0 lies near the 
imaginary axis. In such cases, convergence may be arbitrarily slow. 

It has been suggested [IO(b), 8. l] that the iteration (5) may be accelerated 
by the introduction of real, positive parameters (Y, ,8 such that (5) becomes 

zi+1= 
azi + pz;’ 

a+p ’ (7) 

with the possibility that (Y, P may vary from step to step. To investigate this 
possibility, it may be noted that (7) implies that 

zi+1 fl 2. +1 
=‘-x 

‘i + P/a 

‘i+l - ’ zi - 1 ‘i - P/u 

and that the identity 

Iz + y(a - (z - y12 = 4yx, Y’O 

or 

z+y 2 l-l =1+4yx 
Z--Y lz - Y12 

(8) 

shows that both factors on the right side of (8) are greater than 1, in modulus, 
when x > 0, and similarly less than 1 when x < 0. It may be concluded that 
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the iteration (7) has the properties (A), (B), and (C) detailed above with 
reference to the iteration (5). By considering the circles of AppolIonius 
referred to above, and noting that they all intersect the unit circle 1.~1 = 1 
orthogonally, it is seen that 

takes its optimal value-least when x < 0, greatest when x > O-when (Y]z]//~ 
= 1, or fi/cx = ) z 1. Thus, whenever zi * 1, the iteration (7) with p/a = 1 xi I will 
be more rapidly convergent than (5). 

Finally, it may be noted that alternative iterations to calculate the square 
root of 1 may be constructed, which have the properties (A), (B), (C) detailed 
above. For, upon solving the equation 

‘i+l +’ ---= 
i i 

zi+l ’ 

%+1-l zi - 1 

for zi+l> the recursion 

(zi+l)r+(Zi-1)7 
'i+l = 

(Zi + 1)’ - (Zi - 1)’ 
(9) 

is obtained. In case r = 2, the iteration (5) is obtained; in case r = 3, Bailey’s 
iteration [2] 

zi+l = 

Zi( z; +3) 

3$+1 

is obtained; in case r = 4, the first iterate 

24+622+1 
zi+1= 

42,( z; + 1) 

of (5) is obtained; etc. These functions are probably too elaborate for 
application to matrix iterations, despite their high orders of convergence. 

III. CONSTRUCTION OF THE SIGN MATRIX 

The following argument, due, in principle, to Roberts [10(b)], establishes 
the convergence of the matrix iteration (1) under the most general circum- 
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stances, and is reconstructed here for the sake of completeness and for the 
derivation of several useful corollaries. 

DEFINITION. Suppose that J = V- ‘MV denotes the lower triangular 
Jordan form of an arbitrary, square, real or complex matrix M, none of whose 
eigenvalues is zero or pure imaginary. Each column of V is either a right 
eigenvector of M, or a principal vector of grade greater than one, in the sense 
of [ll, pp. 42-431. Let 1, be the unique diagonal matrix associated with _7 
whose diagonal elements are + 1 whenever the corresponding diagonal 
element of J has positive real part, and - 1 otherwise. Let the matrix M, be 
defined by 

Mm = V&V- ‘. (IO) 

THEOREM. Suppose that matrix M has no zero OT purely imaginary 

eigenvalues. Then the matrix iteration (l), begun with M, = M, is convergent 

to the matrix M, associated with M by the form& (10). 

Proof It follows from (1) that, if Jo = J and A+ i = (J, + J,- ‘)/2, then 
Mj = VJV ‘. Further, all matrices Jj are lower triangular, and their diagonal 
elements (eigenvalues) are defined, independently, in terms of the eigenvalues 
of M as starting values, by the scalar iteration (5). Sequences of corresponding 
eigenvalues of the matrices lj thus possess the property (C) detailed above. 

Since Jm may be partitioned, conformably with J, into multiples of the 
identity matrix, each of appropriate dimension, it follows that M, commutes 
with M, and with MP for each j. 

It follows from the definition of M, that the eigenvalues of Mj + M, have 
nonzero real part for every j; thus the function 

$(M)=(Mj- M,)(A4j+ M,)-’ (11) 

is well defined for every j. Moreover, fi( M) is similar to ( JI - J,)( J1 + J=,>-- l, 

a product of lower triangular matrices, whose diagonal elements, as a conse- 
quence of the identity 

(z + y12 - I.2 - y(Z = 4yr, YX ’ 0, 

are all less than 1 in absolute value. 
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The commutativity of M, and M, leads to the formula 

since, according to the definition (lo), 

Since the eigenvalues of fi( M) are all less than 1 in absolute value, it may be 
concluded that fjcM> -+ 0 as j- co. 

According to (11) 

so that 

and 

f;(M)+Z=2Mi(Mj+M,)-1, 

fi(M)-I= -2M,(Mj+h&, 

Therefore 
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Mj= [‘+fi(M)][Z-f;(M)]-lM,, 

whence Mj + M, as J ‘+ co, as anticipated by the choice of notation. n 

COROLLARY 1. The columns of V, which constitute a basis in n-space 

and are either eigenvectors of M or principal vectors of M of higher grade, are 

all eigenvectors of M,. 

Thus, for example, the matrix M, + Z will have rank equal to the number 
p of eigenvalues of M, counting multiplicities, with positive real part. The row 
and column spaces defined by M, + I will be maximal left and right invariant 
subspaces of M determined by these eigenvalues. 

COROLLARY 2. M, commutes with M, and with each Mj 

The matrix iteration (1) is designed to construct square roots of the 
identity, and its convergence may be assessed by comparing MT with 1. Thus, 
the matrix Ej = My - Z may be computed for any j, and the Euclidean norm 

evaluated. It is known, 
1X2 - 1) < ej-i.e. that A2 

then, that every eigenvalue X of M, is such that 
lies in a circle with center + 1 and radius e, From 

this it may be deduced that every eigenvalue X of M, lies in a circle centered 
at + 1 with radius ej/(l + \j’_). (Th is is a result of circular arithmetic; see 

[6, 52, p. 3081). In order, then, that Tr(Mj) should round correctly to p - q, it 
is sufficient that 

ej= )IEJl = I]MT - I]) 

nej 1 
<-. 

1+/G 2 

This inequality may be applied as a criterion to terminate the iteration (1). 
The property (B) of the square root iteration shows that convergence of 

{ Mj} cannot take place when M has pure imaginary eigenvalues. In this case it 
is relevant to note that convergence of { Mj> implies convergence of (Tr(Mj)) 
to a real integral limit. A moment’s reflection will show that, whether or not 
( Mj} is convergent, {Re[Tr( M,)]} will always converge to a real integral limit. 
When lack of convergence of { Mj> suggests the presence of pure imaginary 
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eigenvalues, and j is sufficiently large that lim Re[Tr( Mj)] may be identified 
and it is practically certain that the remaining eigenvalues are all clustered 
about + 1 (and thus removed from the imaginary axis), then the translation 
which replaces Mj with &Zi = Mj + tZ, where ItI < 1 (say It( = 0.25) will give 

rise to a matrix Mj which can be guaranteed to have no purely imaginary 
eigenvalues. If t > 0, continuation of the iteration from Mj should result in a 
value for lim Re[Tr( Mj)] = limTr( Mj) which is greater than the previous limit 
by the number of pure imaginary eigenvalues of M. If t < 0, the same 
procedure will decrease the previous limit by the same amount. 

IV. DETERMINATION OF THE INVARIANT SUBSPACE RELEVANT 
TO THE EIGENVALUES WITHIN A RECTANGLE 

The eigenvalues of (M - lZ)2 are (X - {)2, in terms of the eigenvalues X 
of M. Consideration of the Jordan form of M shows that the subspace %, 
spanned by the totality of right eigenvectors and principal vectors of higher 
grade associated with a particular eigenvalue X of M is an invariant subspace, 
of the same type, of (M - <Z)2, associated with the eigenvalue (X - l)2. 
According to Corollary 1 above, this subspace is an invariant subspace, again 
of the same type, of ((M - {Z)“),. Th ese are the facts which may be applied 
to determine the number of eigenvalues of M in a rectangle, and the direct 
sum of the invariant subspaces 9X, associated with them. 

In the simplest case, in which (A - {)2 has nonzero real part for every 
eigenvalue X of M and each comer l of the rectangle of Figure 1, a sign 

matrix ((M - {I)‘), may be associated with each comer. Then, since these 
matrices are simultaneously diagonalized by the matrix V which transforms M 
to Jordan form, the corresponding diagonal elements in the canonical forms of 

((M -s-Z)“), may be combined by forming 

(13) 

Examination of the nine cases enumerated in the sketch in Figure 2 shows 
that the diagonal elements corresponding to eigenvalues of M lying outside 
the rectangle will cancel out in this sum, while diagonal elements correspond- 
ing to eigenvalues lying within the rectangle will total + 1. Thus, S( n, s, e, W) 
will be a matrix whose rank equals the number of eigenvalues of M lying 
within the rectangle, including multiplicities, whose columns span the direct 
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FIG. 2. Signs of the diagonal elements at each comer. 

sum of the right invariant subspaces 91Lh of M associated with these eigen- 
values, and whose rows span the corresponding left invariant subspace of M. 
By taking traces of the matrices appearing in (13) the formula (3) is derived. 

When, for some point l, the matrix M - {I is singular, this point may 
immediately be identified as an eigenvalue of M. Construction of further 
rectangles enclosing <, and application of the procedures described, will then 
lead to the invariant subspace associated with the eigenvalue y or, if relevant, 
with a cluster of eigenvalues in a neighborhood of <. 

According to (2), (X - {)2 has zero real part whenever X lies on one of the 
lines which pass through { = a + ib with slopes _+ 1. Thus, in the remaining 
case-in which one or more eigenvalues fall on a side, or a side produced, of 
the rectangle of Figure 1, but not a comer-two or more of the matrices 
(M - {Z)2 associated with the comers of the rectangle will have one or more 
pure imaginary eigenvalues different from zero. In such circumstances, the 
procedures outlined in Section III above may be applied to determine the 
number of eigenvalues of M lying in the (open) interior of the rectangle. Thus, 
by making a shift of the side(s) affected, so as to decrease the size of the 
rectangle, and applying (13) to the sign matrices obtained after the shifts have 
been made, as described in Section III above, the number of these “interior” 
eigenvalues may be found, together with the direct sum of the invariant 
subspaces 9L, associated with them. In addition, the number of eigenvalues 
lying on each side of the rectangle may be determined. 



232 JAMES LUCIEN HOWLAND 

This research was supported, in part, by the Natural Sciences and En- 

gineering Research Council of Canada, Grant A 3028. 

REFERENCES 

1 
2 
3 

7 

8 

9 

10 

11 

Lars V. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1979. 
V. A. Bailey, Prodigious calculations, Austral. J. Appl. Sci. 3:78-80 (1941). 
A. N. Beavers, Jr., and E. D. Denman, A computational method for eigenvalues 
and eigenvectors of a matrix with real eigenvahres, Numcr. Math. 21:389-396 
(1973). 
Alex. N. Beavers, Jr., and Eugene D. Denman, A new solution method for 
quadratic matrix equations, Math. Biosci. 20:135-143 (1974). 
Eugene D. Denman and Alex. N. Beavers, Jr., The matrix sign function and 
computation in systems, Appl. Math. Cornput. 2:63-94 (1976). 
I. Gargantini and P. Henrici, Circular arithmetic and the determination of 
polynomial zeros, Numer. Math. 18:305-320 (1972). 
A. Halbersberg and Y. Bar-ness, Solution of the discrete regulator problem using 
the sign matrix function, Electron. Letters 14:286-287 (1978). 
C. Hermite, Sur le nombre des racines d’une equation algebrique comprises entre 
des limites donnees. Extrait d’une lettre a M. Borchardt, J. Reine Angew. Math. 
52:39-51 (1856); translation, P. C. Parks, Internat. J. Control 26:183-185 (1977). 
G. Julia, Memoire sur 1’Iteration des Fonctions Rationelles, J. Math. Pures Appl. 
Ser 8 1:47-245 (1918). 
J. D. Roberts, (a) Linear model reduction and solution of the algebraic riccati 
equation by use of the sign function, Cambridge Univ. Engineering Report 
CUED/B-Control/TR 13, 1971; reprinted, Internat. J. Control 32:677-687 
(1980). (b) The sign function of a matrix applied to linear model reduction and 
the matrix Lyapunov and Riccati equations, RCS 90, Dept. of Computer Sci., 
Univ. of Reading, Jan. 1978. 
J. H. Wilkinson, The Algebraic Eigenualue Problem, Clarendon Press, Oxford, 
1965. 

Aeceioed20 April 1980; revised26 May 1982 


